
COMPUTER PROGRAMMING USING C

1. Algorithm and Programming Development

C programming language works as an interface between the programmer and the computer.

PDLC: Program Development Life Cycle

PDLC consists of seven steps:

 Problem Definition/Analysis

 Program Designing

 Algorithm Development and Flowcharting

 Program Coding

 Debugging and Compilation

 Program Testing

 Implementation and Documentation

1). Problem Definition/Analysis

Before writing a program, it is must to have proper understanding of the problem.

2). Program Designing

It consists of five steps:

 Design Input

 Design Output

 Code Design

 Form Design

 Module Design

3). Algorithm Development and Flowcharting

Algorithm:

It is a step by step solution of the problem written in simple language.

Algorithm Example 1: Write an algorithm to add two nos.

Step1: start

Step2: Read a, b

Step3: sum = a + b

Step4: write sum

Step5: stop

Flowchart:

It is the graphical representation of an algorithm.

Several standard graphics are applied in a flowchart:

 Terminal Box - Start / End

 Input / Output

 Process / Instruction

 Decision

 Connector / Arrow

The graphics above represent different part of a flowchart. The process in a flowchart

can be expressed through boxes and arrows with different sizes and colors. In a

flowchart, we can easily highlight a certain element and the relationships between

each part.

How to Use Flowcharts to Represent Algorithms

Now that we have the definitions of algorithm and flowchart, how do we use a

flowchart to represent an algorithm?

Algorithms are mainly used for mathematical and computer programs, whilst

flowcharts can be used to describe all sorts of processes: business, educational,

personal and of course algorithms. So flowcharts are often used as a program planning

tool to visually organize the step-by-step process of a program. Here are some

examples:

Print numbers from 1 to 20:

 Algorithm:

Step 1: Initialize X as 0,

Step 2:

Increment X

by 1,

Step 3: Print

X,

Step 4: If X is less than 20 then go back to step 2.

Flowchart:

Example 2: Convert Temperature from Fahrenheit (℉) to

Celsius (℃) Algorithm:

Step 1: Read temperature in Fahrenheit,

Step 2: Calculate temperature with formula

C=5/9*(F-32), Step 3: Print C

Flowchart:

Conclusion

From the above we can come to a conclusion that a flowchart is pictorial

representation of an algorithm, an algorithm can be expressed and analyzed

through a flowchart.

An algorithm shows you every step of reaching the final solution, while a

flowchart shows you how to carry out the process by connecting each step. An

algorithm uses mainly words to

describe the steps while a flowchart uses the symbols, shapes and arrows to

make the process more logical.

4). Program Coding:

 When the algorithm is developed and tested; it needs implementation using

that language. This is known as program coding.

5). Debugging and Compilation:

Once the program is ready, it must be checked for errors. An error is also known as

bug.

Error/Bug: there are three types of errors or bugs:

 Syntax error

 Semantics error/Logical error

 Execution error

a).Syntax Error:

A grammatical error is known as syntax error.

Example of syntax error:

Correct: printf(“Welcome to the world of C”);

Incorrect: printf(“Welcome to the world of C”);

The incorrect statement is not terminated by a semicolon

b).Semantics error/Logical error:

There is requirement to write a program to add two numbers; but the programmer

did subtraction.

c=a+b; (correct)

c=a-b; (incorrect)

c).Execution Error:

execution error is also known as runtime error.

Example:

1. divide by zero

2. infinite loop

Debugging:

https://www.edrawsoft.com/flowchart-symbols.php

Isolation of errors and their removal is known as debugging.

Compilation:

Compilation is the process of converting source program into an object program.

Source program:

The program written in C (middle level language).

Object program:

The program written in machine language (0’s & 1’s).

Shortcut for compilation in C is: Alt+F9

6).Program Testing:

The program is tested before implementation.

For testing a program, some sample data is calculated manually.

Then, same data is given as input to the program.

The output of program is compared to the manual output.

If the result is ok, then there are no logical errors present in the program; but, if the

output is incorrect, it means that some logical errors are present in the program. To

locate these errors, one has to go back third step i.e. check algorithms and flowcharts

and locate problems. Correct problems, recode the program, recompile program and

test program again. These steps are repeated time and again; until, output during

testing becomes correct.

7).Implementation and documentation:

There are three main steps:

1. Installation of software

2. Maintenance of software

3. Documentation of software

Characteristics of good program:

1. Efficient

2. Reliable

3. Flexible

4. Extensible

5. Portable

6. Integrity

7. Robustness

8. Clarity

Program Approaches:

 Top down approach

 Modular approach or structured programming

 Bottom up approach

C language follows top down approach.

C program structure:

 C is a middle level language as it has features of both Low Level Language & High Level

Language.

BRIEF HISTORY OF C:

C was developed in 1972 by Ken Thompson and Dennis Ritchie at Bell Laboratories, USA.

PREDESSOR OF C:

 B/BCPL(Basic Combined Programming Language)

SUCESSOR OF C:

 C++

Working With C:

The most commonly used C compilers are:

Borland C (BC)

Turbo C (TC)

Turbo C is more followed than Borland C.

Source Program
(written in C)

Alt+F9

(compilation)

program.c

Compiled Program
(object program)

Ctrl+F9

(run/execution)

program.obj

Executable Program

Alt+F5

(to view the exe file)

Program.exe

 Compiler Linker

Compiler:

The compiler converts source program to object program.

Linker:

The linker converts object program to executable program.

The C character set:

Type of character Description characters

Lowercase alphabets a to z A,b,…z

Uppercase alphabets A to Z A,B…Z

Digits 0 to 9 0,1,…9

Special characters ` to ? `,~,…?

White spaces Blank spaces to new line Blank spaces, carriage

return,…new line

Special characters:(32)

` Backtick

~ Tilde

@ At the rate of

! exclamation mark

$ Dollar

Hash

^ Caret

* Asterisk

% percentage

& ampersand

(Left parenthesis

) right parenthesis

[left bracket

] Right bracket

{ Left brace

} Right brace

< Less than

> Greater than

+ Add

= Equal to

_ Underscore

- Minus

| Vertical bar

/ Slash

\ Backslash

; Semicolon

: Colon

‘ apostrophe

“ Quotation mark

, Comma

. Period

? Question mark

White spaces:

Blank spaces Single spacebar

Carriage return Enter

Horizontal tab Eight horizontal spaces

Vertical tab/Form feed Eight vertical spaces

New line Next line

Escape sequences:

Escape Sequences

Escape Sequences

Character

\f Form feed

\n Newline

\r Return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\' Single quotation mark

\" Double quotation mark

\? Question mark

\0 Null character

Data types in C:

Primary data types in C:

Data type Format specifier

integer “%d”

character “c”

float “%f”

double “%lf”

void void

Data Type Format

Specifier

Minimal Range Typical Bit

Size

unsigned char %c 0 to 255 8

char %c -127 to 127 8

signed char %c -127 to 127 8

int %d, %i -32,767 to 32,767 16 or 32

unsigned int %u 0 to 65,535 16 or 32

signed int %d, %i Same as int Same as int

16 or 32

short int %hd -32,767 to 32,767 16

unsigned short

int

%hu 0 to 65,535 16

signed short int %hd Same as short int 16

long int %ld, %li -2,147,483,647 to 2,147,483,647 32

long long int %lld, %lli -(263 – 1) to 263 – 1 (It will be added by the C99

standard)

64

signed long int %ld, %li Same as long int 32

unsigned long

int

%lu 0 to 4,294,967,295 32

float %f 1E-37 to 1E+37 along with six digits of the

precisions here

32

double %lf 1E-37 to 1E+37 along with six digits of the

precisions here

64

long double %Lf 1E-37 to 1E+37 along with six digits of the

precisions here

80

Storage classes in C:

Class Name of

Class

Place of

Storage

Scope Default

Value

Lifetime

auto Automatic RAM Local Garbage

Value

Within a function

extern External RAM Global Zero Till the main program ends. One can

declare it anywhere in a program.

static Static RAM Local Zero Till the main program ends. It retains the

available value between various function

calls.

register Register Register Local Garbage

Value

Within the function

Derived types

(a) Pointer types,

(b) Array types,

(c) Structure types,

(d) Union types and

(e) Function types.

C Operators:

An operator is a symbol that tells the compiler to perform specific mathematical or logical

functions. C language is rich in built-in operators and provides the following types of operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Special Operators

Arithmetic Operators

The following table shows all the arithmetic operators supported by the C language. Assume

variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from

the first.

A − B = -10

* Multiplies both operands. A * B = 200

https://www.tutorialspoint.com/cprogramming/c_arithmetic_operators.htm

/ Divides numerator by de-

numerator.

B / A = 2

% Modulus Operator and

remainder of after an integer

division.

B % A = 0

++ Increment operator increases

the integer value by one.

A++ = 11

-- Decrement operator decreases

the integer value by one.

A-- = 9

Relational Operators

The following table shows all the relational operators supported by C. Assume variable A holds

10 and variable B holds 20 then −

Show Examples

Operator Description

== Checks if the values of two operands are equal or not. If yes, then the condition

becomes true.

!= Checks if the values of two operands are equal or not. If the values are not equal,

then the condition becomes true.

> Checks if the value of left operand is greater than the value of right operand.

If yes, then the condition becomes true.

< Checks if the value of left operand is less than the value of right operand. If yes,

then the condition becomes true.

>= Checks if the value of left operand is greater than or equal to the value of right operand.

If yes, then the condition becomes true.

<= Checks if the value of left operand is less than or equal to the value of right operand.

If yes, then the condition becomes true.

https://www.tutorialspoint.com/cprogramming/c_relational_operators.htm

Logical Operators

Following table shows all the logical operators supported by C language. Assume

variable A holds 1 and variable B holds 0, then −

Show Examples

Operator Description Example

&& Called Logical AND operator. If both the

operands are non-zero, then the condition

becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any of the

two operands is non-zero, then the

condition

becomes true.

(A || B) is true.

! Called Logical NOT Operator. It is used to

reverse the logical state of its operand.

If a condition is true, then Logical NOT

operator will make it false.

!(A && B) is true.

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and

^ is as follows −

p q p & q p | q

0 0 0 0

0 1 0 1

1 1 1 1

1 0 0 1

Assume A = 60 and B = 13 in binary format, they will be as follows −

A = 0011 1100

https://www.tutorialspoint.com/cprogramming/c_logical_operators.htm

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The following table lists the bitwise operators supported by C. Assume variable 'A' holds 60

and variable 'B' holds 13, then −

Show Examples

Operator Description Example

& Binary AND Operator copies a bit to the result if it

exists in both operands.

(A & B) = 12, i.e., 0000 1100

| Binary OR Operator copies a bit if it exists in either

operand.

(A | B) = 61, i.e., 0011 1101

^ Binary EXOR Operator copies the bit if it is set in one

operand but not both.

(A ^ B) = 49, i.e., 0011 0001

~ Binary One's Complement Operator is unary and has

the effect of 'flipping' bits.

(~A) = ~(60), i.e,. ~00111100

 11000011

<< Binary Left Shift Operator. The left operands value is

moved left by the number of

bits specified by the right operand.

A << 2 = 240 i.e., 1111 0000

>> Binary Right Shift Operator. The left operands value is

moved right by the number

of bits specified by the right operand.

A >> 2 = 15 i.e., 0000 1111

Assignment Operators

The following table lists the assignment operators supported by the C language −

Show Examples

https://www.tutorialspoint.com/cprogramming/c_bitwise_operators.htm
https://www.tutorialspoint.com/cprogramming/c_assignment_operators.htm

Operator Description Example

= Simple assignment operator. Assigns

values from right side operands to

left side operand

C = A + B will assign the value of A + B to C

+= Add AND assignment operator. It adds

the right operand to the left operand

and assign the result to the left operand.

C += A is equivalent to C = C + A

-= Subtract AND assignment operator. It

subtracts the right operand from the

left operand and assigns the result to the

left operand.

C -= A is equivalent to C = C - A

*= Multiply AND assignment operator. It

multiplies the right operand with the

left operand and assigns the result to the

left operand.

C *= A is equivalent to C = C * A

/= Divide AND assignment operator. It

divides the left operand with the

right operand and assigns the result to the

left operand.

C /= A is equivalent to C = C / A

%= Modulus AND assignment operator. It

takes modulus using two operands

and assigns the result to the left operand.

C %= A is equivalent to C = C % A

<<= Left shift AND assignment operator. C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and assignment

operator.

C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment

operator.

C |= 2 is same as C = C | 2

Increment & Decrement operators:

There are two types of Increment operators in C:

a).prefix increment

b=++a;

In prefix increment, the current value of a will be incremented first by 1. Then the new value will be

assigned to b for the expression in which it is used in the same line.

b).postfix increment

b=a++;

The postfix increment operator allows the usage of the current value of a variable in an expression and

then increments its value by 1 in next line.

c).prefix decrement:

b=--a;

In prefix decrement, the current value of a will be decremented first by 1. Then the new value will be

assigned to b for the expression in which it is used in the same line.

d).postfix decrement:

b=a--;

The postfix decrement operator allows the usage of the current value of a variable in an expression and

then decrements its value by 1 in next line.

Syntax of conditional operator in C

variable = condition? statement 1: statement 2;

If the condition is true(1), then statement 1 will be executed & its value will be assigned to the

variable.

If the condition is false(0), then statement 2 will be executed & its value will be assigned to the

variable.

Special Operators in C:

There are 4 special operators in C:

a).Comma operator

b).& operator

c).* operator

d).sizeof operator

a).Comma operator

it is used to combine many operators together

example:

for(a=0,b=0;a<=10;a++)

b).& operator

it is also known as address operator. It is used to print address of any memory location.

c).* operator

it is also known as indirection operator.

Example:

int *ptr;

float *ptr1;

d).sizeof operator

it is used to measure size of memory occupied by any variable.

C Keywords:

There are 32 keywords in C.

These are reserved words and can’t be used for variable or identifier name.

C Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

continue for signed void

do if static while

default goto sizeof volatile

const float short unsigned

Control structures in C:

Control structures are of four types:

 Sequence control statements

 Decision control statements/ Conditional control statements

 Case control statements

 Loop control statements

Sequence control statements:

These statements are executed in same order in which they appear in the program. Such a

program is known as monolithic program. No control structure is needed in such programs.

Decision control statements/ Conditional control statements:

 If statement

 If-else statement

 Nested if statement

a). If statement:

it is used when a set of statements are to be executed depending upon a specified condition.

Syntax of if statement:

If (condition)

{

Set of statements to be executed when if condition is true.

}

Example:

#include<stdio.h>

void main()

{

int a,b;

printf(“enter a & b”);

scanf(“%d %d”,&a, &b);

if (a>b)

{

printf(“a is greater”);

printf(“b is smaller”);

}

}

b).If-else statement:

this statement is used when there are two possible results of a question.

Syntax of if-else statement:

if (condition)

{

Statements;

}

else

{

Statements;

}

Example:

#include<stdio.h>

void main()

{

int a,b;

printf(“enter a & b”);

scanf(“%d %d”,&a, &b);

if (a>b)

{

printf(“a is greater”);

}

else

printf(“b is greater”);

}

}

c).Syntax of nested if:

if(condition1)

{statements}

else{if (condition2)

{statements}

else

}

}

Switch statement:

Syntax of switch statement:

Switch(expression)

{

Case constant 1:

Statements;

Case constant 2:

Statements;

Default :

Statements;

}

Break statement:

It is used to transfer control out of the current loop.

Syntax of break statement:

break;

exit function:

syntax:

exit();

it transfers the control out of the program. It stops the execution of the program.

Loop structures in C:

 For loop

 While loop

 Do while loop

a).for loop:

syntax of for loop:

for(initialization part; conditional part; increment/decrement part)

{

statements;

}

b).while loop:

syntax of while loop:

while(condition)

{

Statements;

}

If condition is true, statements will be executed; otherwise statements will not be executed.

c).do-while loop:

syntax of do while loop:

do

{

Statements;

}while(condition);

In do while loop condition is checked at the end of the loop.

So, do while loop will be executed at least once; even though the condition is false.

Functions in C:

Function:

A function is a subroutine that performs a particular task.

Types of functions:

a). user defined functions

b). built-in functions

a). user defined functions:

these are the functions that are defined by the user.

b). built-in functions:

these functions are pre-defined in C header files.

For example:

The function clrscr() is defined in header file conio.h

Examples of some header files:

pow(), printf(), scanf(), sin(), cos()

Argument:

It is used to pass the information between functions and main().

Types of Arguments:

1. formal arguments or dummy arguments

2. actual arguments

#include<stdio.h>

#include<conio.h>

/* program to add two numbers using function */

void main()

{

int a, b;

clrscr();

printf(“enter a and b”);

scanf(“%d %d”,&a, &b);

add (a, b); /* call to add function. a and b are actual arguments */

}

void add(int a1, int b1) /*a1 and b1 are formal or dummy arguments */

{

int c;

c=a+b;

printf(“%d”,c);

}

Parameter passing in functions:

 Call by value

 Call by reference

Call by value:

In call by value, the value of actual parameter is passed to formal parameter.

/* program to swap two numbers using call by value */

#include<stdio.h>

#include<conio.h>

main()

{

int a, b;

clrscr();

printf(“enter a and b”);

scanf(“%d %d”, &a,&b);

swap(a,b);

printf(“value in main after swapping”);

printf(“%d %d”, a, b);

}

void swap (int a1, int b1)

{

Int c;

c=a1;

a1=b1;

b1=c;

printf(“value in function after swapping”);

printf(“%d %d”, a1, b1);

}

Output:

Enter a and b 5 6

value in function after swapping 6 5

value in main after swapping 5 6

Call by reference:

In call by reference, the address of actual parameters is passed to formal parameters.

/* program to swap two numbers using call by value */

#include<stdio.h>

#include<conio.h>

main()

{

int a, b;

clrscr();

printf(“enter a and b”);

scanf(“%d %d”, &a,&b);

swap(&a,&b);

printf(“value in main after swapping”);

printf(“%d %d”, a, b);

}

void swap (int *a1, int *b1)

{

Int c;

c=*a1;

*a1=*b1;

*b1=c;

printf(“value in function after swapping”);

printf(“%d %d”, *a1, *b1);

}

Output:

Enter a and b 5 6

value in function after swapping 6 5

value in main after swapping 6 5

Recursion:

It is the ability of a function to call itself.

ARRAY

Array:

An array is a finite, ordered set of homogeneous elements.

Types of array:

 One dimensional array

 Two dimensional array

One dimensional array:

Syntax:

<Type of elements> array name [no. of elements in row];

For example:

int num [10];

2bytes 2bytes

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

two dimensional array:

Syntax:

<Type of elements> array name [no. of elements in row][no. of elements in column];

For example:

int num [5][3];

num[0][0] num[0][1] num[0][2] num[0][3] num[0][4]

num[1][0] num[1][1] num[1][2] num[1][3] num[1][4]

num[2][0] num[2][1] num[2][2] num[2][3] num[2][4]

Array of characters:

char name[5]={‘a’, ‘b’, ‘c’, ‘d’, ‘e’};

1 byte 1byte 1byte 1byte 1byte

a b c d e

name[0] name[1] name[2] name[3] name[4]

POINTERS

Pointer:

A pointer is a variable that stores the address of another variable.

It is also known as indirection operator.

Pointer Declaration:

Syntax:

Data type *ptr1, *ptr2,……*ptrn;

Example:

int *a;

Indirection operator:

* is known as indirection operator.

	Several standard graphics are applied in a flowchart:
	How to Use Flowcharts to Represent Algorithms
	Algorithm:
	Flowchart:
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators

